
Gynecology & Obstetrics
Bakali and Tincello, Gynecol Obstet 2013, 3:4
http://dx.doi.org/10.4172/2161-0932.1000163

Review Article Open Access

Volume 3 • Issue 4 • 1000163
Gynecol Obstet
ISSN:2161-0932 Gynecology, an open access journal 

Cannabinoids and the Urinary Bladder
Evangelia Bakali1,2* and Douglas G Tincello1,2

1University Hospitals of Leicester, NHS trust, Leicester, UK 
2Reproductive Sciences Section, Department of Cancer Studies and Molecular Medicine, University of Leicester, UK

Abstract
The presence of the Endocannabinoid System (ECS) in the urinary bladder has led to speculation that 

endocannabinoid-signalling is involved in the signal transduction pathways regulating bladder relaxation and may 
be involved in pathophysiological processes of the bladder. On the basis of this evidence, it was postulated that the 
binding of endocannabinoids to the cannabinoid receptors (CB1 and CB2) may result in relaxation of the urinary bladder 
during the filling phase. Dysregulation of the ECS in human bladder may be responsible for the aetiopathogenesis of 
Overactive Bladder Syndrome (OAB) and Detrusor Overactivity (DO).
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Introduction
Over the past decade, interest in the role of endocannabinoids 

in regulating many mammalian processes has increased and has 
been proposed to be involved in the signal transduction mechanism 
regulating micturition [1,2]. In a sub-analysis of a multicentre, 
randomized controlled trial of Cannabis in Multiple Sclerosis (CAMS) 
the effect of cannabinoids on reducing urge incontinence episodes 
without affecting voiding in patients with multiple sclerosis and 
Neurogenic Detrusor Overactivity (NDO) was tested [3]. 630 patients 
were randomized to receive an oral administration of the cannabis 
extract, Δ9-Tetrahydrocannabinol (THC) or matched placebo. Based 
on incontinence diaries there was a 25% reduction (p=0.005) in the 
cannabis extract group and THC showed a 19% reduction (p=0.039) in 
urinary incontinence episodes relative to placebo suggesting cannabis 
may modulate detrusor function [3]. This clinical effect of cannabis is 
supported by the localization and increased density of suburothelial 
CB1 nerve fibres in patients with idiopathic detrusor overactivity and 
painful bladder syndrome compared with controls (p= 0.0123 and 
p= 0.0013 respectively) [2]. However, there are several possible CB 
receptor isoforms and subtypes and their anatomical distribution, 
through which the Δ9-THC effect is mediated, remains unknown. 
Since Δ9-THC acts on the brain, improvement in urgency and urinary 
incontinence episodes observed in the CAMS study might be attributed 
to the effects of Δ9-THC at any point in the peripheral nervous system 
and/or in the micturition centres of the central nervous system.

Historical Review
Cannabis consists of the aerial, seeds and root parts of Cannabis 

sativa, which is an annual herb indigenous to central and western 
Asia and is cultivated in other tropical and temperate regions for 
the fibre used to produce ropes and carpets [4]. There have been 
more than 60 cannabinoids identified in Cannabis extracts of which 
the most abundant compound which induces the majority of the 
psychotropic effects of cannabis, is Δ9-THC [5]. Other constituents 
include cannabinol, cannabidiol, cannabigerol, cannabichromene and 
the relative acids [5]. Cannabis has been mentioned in early Hindu 
and Chinese medicine and its use spread through Persia to Arabia 
at around the time of the 10th century [6]. The therapeutic effects of 
cannabinoids were studied in the early 19th Century Irish physician Sir 
William B. O’Shaughnessy, who demonstrated the potential treatment 
in a range of disorders including cholera, rheumatic diseases, delirium 
and infantile convulsions [7]. Historically cannabis has been used in 
obstetrics and gynaecology for the treatment of menstrual irregularity, 
dysmenorrhoea, hyperemesis gravidarum, childbirth, postpartum 

haemorrhage, menopausal symptoms and urinary symptoms [8]. 
More common therapeutic applications of cannabis include analgesia, 
migraine, muscle spasms, seizures, attenuation of nausea and vomiting 
of cancer chemotherapy, anti-rheumatic and antipyretic actions [8,9].

The pharmacological effects of cannabinoids are mediated by two 
types of G Protein-Coupled Receptors (GPCR) called CB1 and CB2. CB1 
was first identified in 1988 and subsequently cloned from rat cerebral 
cortex in 1990 [10,11]. It is most widely expressed in central nervous 
system regions involved with pain transmission and is the most abundant 
GPCR in the brain [12]. It has also been located in a considerably lower 
concentration on neurons of peripheral tissues including the heart, vas 
deferens, urinary bladder and small intestine [12]. The CB2 receptor 
was cloned from human promyelocytic leukaemia cells (HL-60 cells) in 
1993 and is mainly expressed in immune tissues but is also expressed 
in low levels in the CNS in both microglia and some neurons [13,14]. 
The localization of CB2 receptors in immune tissues implies that 
some cannabinoid-induced immunosupression involves a receptor-
mediated process. The cannabinoid receptors are activated by natural 
ligands with arachidonyl ethanolamine (anandamide) being the first 
endogenous ligand to be isolated Anandamide mimics the effects of 
Δ9-THC by binding to CB receptors, but lacks the psychocactive effects 
probably because it is highly susceptible to enzymatic hydrolysis 
[10,15]. 

The Endocannabinoid System
The Endocannabinoid System (ECS) consists of the cannabinoid 

receptors, the endogenous ligands for the cannabinoid receptors, the 
enzymes involved in the synthesis and degradation of these ligands and 
the transport systems involved in the transfer of these ligands across 
the cell membrane. 

Cannabinoid Receptors 

There are currently three known cannabinoid receptors; CB1, CB2, 
G protein-coupled receptor 55 (GPR55), which are GPCRs activated 
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by endocannabinoid ligands that are arachidonic acid-derived 
lipid mediators [16]. There are two principal signal transduction 
pathways involving the cannabinoid receptors; the Cyclic-adenosine 
monophosphate (cAMP) signal pathway and the phosphatidylinositol 
signal pathway, which are mediated by the various subunits of 
G-proteins [16]. Most GPCRs are capable of activating more than one 
Ga-subtype, but they show a preference for one subtype over another 
[16]. The effector of both the Gαs and Gαi/o pathways is the enzyme 
Adenylate Cyclase (AC), which catalyzes the conversion of Cytosolic 
Adenosine triphosphate (ATP) to cAMP [17]. This mechanism is 
stimulated by G-proteins of the Gαs class and conversely, interaction 
with Gα subunits of the Gαi/o type inhibits AC from generating cAMP. 
[17] The effector of the Gαq/11 pathway is phospholipase C-β (PLCβ), 
which catalyzes the cleavage of membrane-bound phosphatidylinositol 
4,5-biphosphate (PIP2) into the second messengers inositol (1,4,5) 
trisphosphate (IP3) and Diacylglycerol (DAG)[17]. IP3 acts on IP3 
receptors found in the membrane of the Endoplasmic Reticulum (ER) 
to elicit Ca2+ release from the ER, while DAG diffuses along the plasma 
membrane where it may activate any membrane localized forms of a 
second ser/thr kinase called Protein Kinase C (PKC) [17]. Since many 
isoforms of PKC are also activated by increases in intracellular Ca2+, 
both these pathways can also converge on each other to signal through 
the same secondary effector [18]. Elevated [Ca2+]i also binds and 
allosterically activates proteins called calmodulins, which in turn go on 
to bind and activate enzymes such as the Ca2+/calmodulin-dependant 
kinases (CAMKs) [19]. Finally, the effectors of the Gα12/13 pathway are 
three RhoGEFs (p115-RhoGEF, PDZ-RhoGEF, and LARG), which, 
when bound to Gα12/13 allosterically activate the cytosolic small GTPase, 
Rho [19]. Once bound to GTP, Rho can then go on to activate various 
proteins responsible for cytoskeleton regulation such as Rho-kinase 
(ROCK) [19]. Most GPCRs that couple to Gα12/13 also couple to other 
sub-classes, often Gαq/11.

Endocannabinoids

After the cannabinoid receptors were identified as the 
molecular targets for Δ9-THC, natural compounds, which bind 
to these receptors, were discovered. This group of bioactive lipid 
signalling molecules was collectively referred to as endogenous 
cannabinoids or endocannabinoids. N-arachidonyolethanolamide 
(anandamide, AEA) was the first endogenous ligand identified for 
the cannabinoid receptors in 1992, following its isolation from 
porcine brain [20]. Since then, a number of bioactive lipid signalling 
molecules with differing affinities for the cannabinoid receptors 
have been identified. Additional endocannabinoids include, 
N-docosatetra-7,10,13,16-enylethanolamine, 2-arachidonoylglycerol 
(2-AG), 2-arachidonylglyceryl ether (noladin ether), O-arachidonoyl 
ethanolamine (virodhamine), N-dihomo-γ-linoenoyl ethanolamine, 
N-docosatetraenoyl ethanolamine, oleomide, N-Arachidonoyl 
Dopamine (NADA) and N-Oleoyl Dopamine (OLDA) (Figure 1). 
Potency determinations are complicated by the possibility of differential 
susceptibility of endogenous ligands to enzymatic conversion. 

Biosynthesis and degradation of N-acylethanolamides 

AEA synthesis involves a series of enzymatic reactions, the final stage of 
which involves the enzyme N-arachidonoylphosphatidylethanolamine 
specific phospholipase D (NAPE-PLD). NAPE-PLD can be stimulated 
by Ca2+, Mg2+, Co2+, Mn2+, Ba2+ and Sr2+ and other organic cations [21]. 
Whilst spermine, spermidine, and putrescine are also stimulatory 
[21]. Initial characterization of NAPE-PLD revealed the enzyme 
to be membrane associated and it lacks the ability to catalyze a 
transphosphatidylation reaction, which is a common feature of known 

PLDs [22]. NAPE-PLD is the first PLD-type phosphodiesterase which 
belongs to the metallo-β-lactamase family [23]. Unlike classical 
neurotransmitters and neuropeptides, its primary product, AEA is not 
stored in vesicles but synthesized and released “on demand” in response 
to physiological and pathological stimuli, hormones neurotransmitters 
and depolarizing agents from its direct biosynthetic precursor 
N-arachidonoylphosphatidylethanolamine (NAPE) a phospholipid 
commonly found in biological membranes [24,25]. Figure 2 shows an 
outline of the major pathways through which anandamide and 2-AG 
are produced and degraded. 

Fatty Acid Amide Hydrolase (FAAH) is the enzyme primarily 
involved in the hydrolysis of AEA, but can also degrade other 
endocannabinoids. FAAH was first cloned and purified from rat liver 
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Figure 1: Structure of endogenous cannabinoid agonists. The structure of the 
members of the endogenous cannabinoid lipid mediators (A) Anandamide 
(AEA),( B) 2-Arachidonoylglycerol (2AG), (C) Oleoylethanolamide (OEA), 
(D) Palmitoylethanolamide (PEA) and (E) virodhamine and (F) the 
exocannabinoid Δ9-Tetrahydrocannabinol (Δ9-THC).
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Figure 2: Synthesis and degradation of endocannabinoids Major pathways 
for the synthesis and degradation of 2-AG and anandamide.
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microsomes but is present in many other tissues and often in tissues 
containing CB1 and CB2 receptors [26]. In addition to FAAH, AEA can 
also be degraded by Palmitoylethanolamide-Preferring Acid Amidase 
(PAA), cyclooxygenase-2, lipoxygenases and cytochrome P450 [27]. 
2-AG is the second member of the endogenous cannabinoid family to 
be identified, which binds to both CB1 and CB2 receptors with similar 
affinities to AEA, although 2-AG has a higher affinity for CB2 receptors 
than CB1 [12]. The synthesis of 2-AG depends on the conversion of 
2-arachidonate-containing phosphoinositides to diacylglycerols and 
their subsequent transformation to 2-arachidonylglycerol by action 
of two Diacylglycerol Lipase (DAGL) isozymes, DAGLα and DAGLβ. 
Following their synthesis and release, these endocannabinoids are 
removed from their sites of action by cellular uptake and degraded by 
their enzymes. 2-AG is mainly degraded by Monoacylglycerol Lipase 
(MAGL) but a small amount is also degraded by FAAH. 

Synthetic Ligands

Cannabinoid agonists are classified by chemical structure into 
four main groups: classical; non-classical; aminoalkylindoles; and 
eicosanoids [28] (Figure 3). Classical cannabinoids are dibenzopyrane 
derivatives and include Δ9-THC, while non-classical consists of a 
bicyclic and tricyclic analogue of Δ9-THC that lacks a pyran ring [28]. 
One major practical difficulty associated with cannabinoid research 
both in vivo and in vitro, is the high lipophilicity and low water solubility 
of most CB1 and CB2 receptor ligands as this necessitates the use of a 
non-aqueous vehicle such as ethanol, Dimethyl Sulphoxide (DMSO), 
polyvinylpyrrolidone, Tween 80, Cremophor, Emulphor, bovine 
serum albumin, or water soluble emulsion Tocrisolve 100, which is a 
mixture of soya oil, Pluronic F68 and water to get the compound of 
interest to the cell surface [29]. It also means that these compounds 
“stick” to equipment during treatment, which needs to be taken into 
consideration during experimental procedures.

Cannabinoid receptor signaling

Calcium acts as an intracellular messenger where it plays a key role in 
regulating basic cellular responses, such as migration and proliferation 
[30]. Under resting conditions, cytoplasmic calcium concentration is 
maintained at approximately 100nM [30]. When stimulated, calcium 
enters the cell from extracellular stores via ion channels in the plasma 
membrane or it is released from intracellular stores through channels 
and receptors in the endoplasmic reticulum [30]. These channels may 
be activated and modulated by second messengers including IP3, which 
is produced by binding of ligands, such as ATP, to GPCRs [31].

The CB1 receptor is a member of the rhodopsin subfamily of 
GPCRs [32]. There are three cytosolic loops and a putative fourth 
loop formed by palmitoylation at the juxtamembrane C-terminal 
region, which contribute to the activation of the G-proteins [33]. The 
proximal CB1 receptor intracellular C-terminal domain is critical for 
G-protein coupling and the distal C-terminal tail domain modulates 
signal transduction [33]. Most cannabinoid effects are sensitive to 
Pertussis Toxin (PTX) implicating a CB1 and CB2 receptor coupling to 
a Gi/o protein [34]. The binding of endocannabinoids and cannabinoids 
to CB1 and CB2 results in a decrease of intracellular cAMP levels and 
activation of mitogen-activated protein kinase through the coupled Gi/o 
proteins [34-36]. Cannabinoid-mediated inhibition of cAMP has been 
demonstrated in slices of rat hippocampus, striatum, cerebral cortex 
and cerebellum [36]. CB1 can also stimulate the formation of cAMP 
through Gs under certain conditions [37]. It may also be that CB1 
receptors can exist as two distinct subpopulations, one coupled to Gi/o 
proteins and the other to Gs [38,39]. The level of cytosolic cAMP may 
then determine the activity of various ion channels as well as members 
of the ser/thr specific protein kinase A (PKA) family [32,40,41]. Thus 
cAMP is considered a second messenger and PKA a secondary effector. 

In addition, activation of CB1 receptor modulates ion channels 
through Gi/o proteins leading to the activation of A-type and inwardly 
rectifying potassium channels [42-45]. This is due to decreased 
phosphorylation of the channels, as protein kinase A activity is 
decreased due to cannabinoid induced inhibition of AC [45]. Thus 
cannabinoids increase the efflux of potassium. In addition, activation 
of CB1 causes a cAMP-independent, but Gi/o-dependent inhibition 
of N-type and P/Q-type calcium channels and activation of inwardly 
rectifying potassium channel proteins (e.g. GIRK1, GIRK2), leading to 
a decrease calcium influx and increase in potassium efflux [42-44]. 

Similarly, CB1, CB2 receptors can modulate AC and MAP kinase 
activity, through their ability to couple to Gi/o proteins [46]. The MAP 
kinase pathway is a key signalling mechanism that regulates many 
cellular functions such as cell growth, transformation, differentiation, 
gene expression and apoptosis [47]. Activation of the MAP kinase 
pathway is associated with the activation of a tyrosine kinase-linked 
receptor which activates the intracellular G protein Ras and sets up a 
signaling cascade beginning with the activation of the serine/threonine 
kinase Raf (MAP kinase kinase kinase) [32]. Raf activates MAP kinase 
kinase (MEK) leading to phosphorylation and activation of MAP 
kinase, which can phosphorylate various cytoplasmic and nuclear 
proteins [32]. CB1 receptors have been shown to link positively to MAP 
kinase [48]. However, in contrast to CB1, CB2 receptor stimulation is 
believed not to modulate ion channel function as seen in AtT-20 cells 
transfected with CB2 receptors and Xenopus oocytes transfected with 
CB2 [49,50]. In addition, unlike CB1 receptors, CB2 receptors do not 
appear to couple to Gs, suggesting there is a difference between CB1 and 
CB2 receptor signalling [51].

There is evidence that GPR55 is a novel cannabinoid receptor 
that has a different signalling pathway to that of CB1 and CB2 [52,53]. 
GPR55 is also a rhodopsin-like GPCR, which has been implicated in 
diverse physiological and pathological processes such as inflammatory 
and neuropathic pain, bone development and cancer. However, GPR55 
shares only low amino acid sequence identity with CB1 (13.5%) and 
CB2 (14.4%) and lacks the typical functional response elicited by these 
receptors [54]. Activation of the GPR55 receptor coupled to the Gq, 
G12, RHoA, actin, phospholipase C pathway triggers the release of Ca2+ 
from IP3R-gated stores, which leads to increased intracellular Ca2+ 

[53] (Figure 4). GPR55 can be activated by Lysophosphatidylinositol 
(LPI), which is an agonist, which can be antagonized by CP55940 and 
cannabidiol.
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Cannabis and the Urinary Bladder
Cannabinoid Receptor distribution in the urinary bladder

The effect of cannabis on DO symptoms is probably mediated 
through a mechanism that depends on endocannabinoids [3]. The 
mechanism of this effect is far from clear and published data on the 
expression and functional sites of cannabinoid receptors in the bladder 
are contradictory. It is thought that endocannabinoids bind to CB1 
and CB2, resulting in relaxation of the detrusor muscle during the 
filling phase [55,56]. CB1 receptors are mainly found at the central and 
peripheral neuron terminals of the bladder, inhibiting neurotransmitter 
release [55]. Several studies have localized both cannabinoid receptors 
in the urinary bladder of humans rats mice and monkeys [2,55-60]. 
The localization of CB1 receptors has been described to be in the 
urothelium and nerve fibres of the suburothelium and in human 
and rat detrusor muscle [2,58,60]. However, another study did not 
detect the CB1 receptor in rat urothelium or nerve fibres but reported 
immunoreactivity for CB2 in these structures and in ganglion cells 
of the outflow region [1,55]. In addition, human bladder studies 
identifying the presence of gene transcripts by quantitative Polymerase 
Chain Reaction (qPCR) and tissue expression and localization by 
Immunohistochemistry (IHC), revealed a higher abundance of the 
CB1 receptor in the urothelium compared to the detrusor [57]. Similar 
results were found for CB2 but overall, receptor protein expression was 
much lower when compared to CB1 receptor protein expression [57].

Cannabinoid Receptor function in the urinary bladder

Studies have demonstrated that the activation of presynaptic CB1 
and CB2 receptors inhibit electrically evoked contractions in isolated 
mammalian tissue when using THC and the non-selective CB receptor 
agonists CP55940, CP55244, JWH015, which corresponds to the 
localization of CB1 receptors in nerve fibres of the detrusor muscle 
[55,60-62]. In isolated mouse bladder, several cannabinoid receptor 
agonists, including WIN 55212-2, Δ9-THC and anandamide, inhibited 
electrically-evoked bladder contractions in a concentration dependent 
manner [61]. In the same study, it was shown that the inhibitory effect 
was not a post-synaptic effect since contractile responses to muscarinic 
or purinergic receptor agonists were unaffected by pre-treatment with 
Δ9-THC [61]. In rat detrusor muscle, cannabinor (a CB2 selective 
agonist) did not have any effects on nerve-induced contractions [1]. 
Similarly, in a study where human bladder muscle strips were used, 
there was no inhibitory effect of the non-selective CB agonist, WIN 
55212-2, on Electrical Field Stimulation (EFS) evoked contraction [62]. 

In contrast, another study found an attenuation of EFS evoked human 
detrusor contraction in the presence of both CB1 (ACEA) and CB2 
(GP1a) agonists [57]. These findings suggest cannabinoids act on pre-
junctional nerve endings attenuating contractile responses. These data, 
however, must be interpreted with caution because quantification of 
the effect by GP1a or vehicle (dimethyl-sulfoxide) control experiments 
were not presented [57]. Supporting that cannabiboids act on pre-
junctional nerve endings to attenuate a contractile response, Gratzke et 
al. demonstrated co-localization of vesicular acetylcholine transporter 
protein (VAChT) nerve structures and CB2 immunoreactive terminal 
varicosities. They also showed inhibitory effects of CP55, 940 on nerve 
mediated contractions but not on carbachol induced contractions 
in detrusor preparations, suggesting a modulatory function of CB2 
on cholinergic neurotransmission [55]. Similarly, cannabinor (a CB2 
agonist) did not attenuate carbachol-induced contractions in isolated 
rat detrusor tissue, suggesting that the action of the CB2 receptor is 
not directly involved in post-junctional regulation of smooth muscle 
contractility [1]. A recent study showed that both pure Cannabibidiol 
(CBD) and Cannabis Sativa extract enriched with CBD also termed 
as “CBD Botanic Drug Substance” (CBD BDS), which are devoid of 
psychotropic activity, inhibited human and rat bladder contractility via 
a postsynaptic site of action [63]. 

The differences seen between the results of these studies may be 
due to inter-species differences in cannabinoid receptor expression and 
distribution, the effect of these receptors on the release of contractile 
transmitters and anatomical variations in bladder innervation. Inter-
species differences in the neuroanatomy of the mammalian bladders 
are known to exist [62]. For example there are several parasympathetic 
ganglia in isolated bladder tissue from guinea pigs and humans while 
there are none in the urinary bladders of mice and rats [64,65].

Cystometric studies have shown an increase of the micturition 
threshold in rats receiving systemic cannabinoids in normal and inflamed 
conditions induced by acetic acid, cyclophosphamide or turpentine 
oil [66,67]. These effects were stronger when the cannabinoids were 
administered through a close-arterial route rather than systemically 
through the tail vein of the rat, supporting the hypothesis of a local 
regulatory role of the cannabinoid system in the micturition reflex 
[67]. The mechanism by which cannabinoid receptors could modulate 
this reflex is by the presence of CB1 receptors in the afferent nerve 
fibre endings located in the suburothelial layer, which is supported 
by in vitro studies where CB1 agonists reduce neuronal activity and 
attenuate bladder contractility as a result of electrical field stimulation 
in isolated mouse bladder strips [61,68]. In rats, anandamide, WIN 
55212-2 (synthetic CB non-selective agonist), and Ajulemic acid (IP-
751) (synthetic THC analogue), suppress normal bladder activity and 
the urinary frequency induced by bladder irritation suggesting the 
inhibitory effects are least in part mediated by CB1 receptors [66,67,69]. 
A recent study, showed that CB2 receptor mediated signals using a high 
affinity CB2 receptor selective agonist, cannabinor 3.0 mg/kg, increased 
the micturition intervals and volumes by 52% (p <0.05) and 96% 
(p<0.01), respectively, and increased threshold and flow pressures by 
73% (p<0.01) and 49% (p<0.001), respectively, in conscious rats during 
cystometry [1]. It has not been clarified if these actions are related to 
CB receptors in the central nervous system, at peripheral sites in the 
lower urinary tract, or both. Furthermore, it is not known which of the 
two CB receptor subtypes is mainly responsible for the regulation of 
micturition in the different species.

Cannabinoid receptors as therapeutic targets

The most studied cannabinoid compound is Cannabidiol (CBD) 
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which exerts a number of pharmacologic effects such as analgesic, anti-
inflammatory, antioxidant, and anti-tumoral [70]. It has been clinically 
evaluated for the treatment of anxiety, psychosis, and movement 
disorders and has been found to have a safe clinical profile [70]. CBD 
is the main component of Sativex, which also contains Δ9-THC, a 
cannabis-derived drug used for the treatment of pain and spasticity 
associated with multiple sclerosis. Sativex is licensed for this indication 
in patients with multiple sclerosis. In a clinical survey, administration 
of Δ9-THC improved nocturia and detrusor overactivity in patients 
with multiple sclerosis [71]. To date, a small number of open-label and 
placebo-controlled studies have demonstrated that oral administration 
of cannabinoids may alleviate OAB/DO symptoms as first line. Most of 
these studies have been carried out on patients with advanced multiple 
sclerosis using preparations containing Δ9-THC and/or CBD. One 
such study using Sativex, showed a reduction in urgency, number of 
incontinence episodes, frequency and nocturia in patients with multiple 
sclerosis [72,73]. Other cannabinoid receptor agonists are already used 
clinically to suppress nausea and vomiting provoked by anticancer 
drugs (nabilone) or to boost the appetite of AIDS patients but these 
have not been studied for their effects upon urinary symptoms [9].

However, the oral use of cannabinoids may induce undesirable 
CNS effects including hypoactivity, hypothermia and catalepsy, but 
may in turn improve OAB symptoms, which are known to be afferently 
mediated [3,74]. What remains unclear is whether the latter beneficial 
effects are centrally mediated or whether a local bladder component 
acting on the afferent bladder pathway, plays a significant role. There 
are no human data that exists which can answer this question. Data 
from animal studies support a local effect on bladder afferents where 
cannabinoid administration systemically and intravesically, improved 
parameters associated with OAB and DO [55,75]. 

In addition to using an intravesical route of administration for 
cannabinoid drugs in order to bypass the CNS effects associated with 
activation of CB1, the use of CB2 agonists and FAAH inhibitors is 
being explored and appear promising [76,77]. There is emerging 
evidence that activation of CB2 inhibits tissue inflammation and has 
analgesic properties [78-80]. The CB2 subtype is mainly expressed 
outside the CNS, as described earlier, so it can act as a potential 
endocannabinoid target where analgesic effects may be separated 
from psychotropic effects by activating the peripheral receptors. In 
addition, pharmacological targeting of the homeostasis of endogenous 
cannabinoids by manipulating the degradation enzymes, may also 
offer the possibility of avoiding the CNS side effects of exogenous 
cannabinoids. FAAH, an enzyme that specifically degrades anandamide 
has been localised in the urinary bladder [56,77,81]. Inhibition of FAAH 
activity with FAAH inhibitor Oleoyl Ethyl Amide (OEtA), significantly 
increased inter-contraction intervals, micturition volume, bladder 
capacity and threshold pressure urodynamic parameters in rats which 
reflect sensory functions of micturition. These effects were prevented 
by a selective CB2 antagonist. Similarly, another FAAH inhibitor, 
URB597 has been found to have a functional role in the colon, where 
FAAH has been localized by reducing inflammation [77,82,83]. The 
use of a FAAH inhibitor needs to be explored further in the urinary 
bladder because it may be the way forward in treating OAB symptoms. 
However, the complexity of the endocannabinoid system at the tissue 
level may mean that we are still a long way from obtaining a clinically 
useful compound for treatment.

The Future
Modulation of the endocannabinoid system is currently 

being investigated for a wide range of potential therapeutic 

applications including smoking cessation, treatment of obesity, 
epilepsy and other CNS related conditions. Similarly, the presence 
of the endocannabinoid system in the urinary bladder has led to 
speculation that endocannabinoid-signalling is involved in the signal 
transduction pathways regulating bladder relaxation and may be 
involved in pathophysiological processes of the bladder. This role 
of the endocannabinoids in the lower urinary tract supports their 
therapeutic potential in conditions of OAB and DO, whereas evidence 
already exists for their role in bladder inflammation [2,59,75,84]. There 
are still a number of unanswered questions in the understanding of 
cannabinoid pharmacology in the urinary bladder. Clearly, further 
research is required to investigate the role of cannabinoid receptors 
and their exogenous modulators on bladder control prior to embarking 
on a clinical trial involving cannabinoids and healthy volunteers with 
OAB. The inhibitory effects of CB2 and the effect of FAAH inhibitors 
on lower urinary tract control should be the focus of future studies. 
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