Traffic Injury Prevention

Publication details, including instructions for authors and subscription information:
http://www.tandfonline.com/loi/gcpi20

Use of Illicit Drugs by Truck Drivers Arriving at Paranaguá Port Terminal, Brazil

Tiago Severo Peixea, Rafael Menck de Almeidab, Edmarlon Girottoc, Selma Maffei de Andraded & Arthur Eumann Mesasd

a Department of Pathology, Clinical and Toxicology Analysis, Universidade Estadual de Londrina (UEL), Londrina, Paraná, Brazil
b Faculty of Pharmaceutical Sciences, Universidade de São Paulo (USP), São Paulo, Brazil
c Department of Pharmaceutical Sciences, Universidade Estadual de Londrina (UEL), Londrina, Paraná, Brazil
d Department of Public Health, Postgraduate Program in Public Health, Universidade Estadual de Londrina (UEL), Londrina, Paraná, Brazil

Accepted author version posted online: 07 Dec 2013. Published online: 12 Jun 2014.

To cite this article: Tiago Severo Peixe, Rafael Menck de Almeida, Edmarlon Girotto, Selma Maffei de Andrade & Arthur Eumann Mesas (2014) Use of Illicit Drugs by Truck Drivers Arriving at Paranaguá Port Terminal, Brazil, Traffic Injury Prevention, 15:7, 673-677, DOI: 10.1080/15389588.2013.868893

To link to this article: http://dx.doi.org/10.1080/15389588.2013.868893

PLEASE SCROLL DOWN FOR ARTICLE

Taylor & Francis makes every effort to ensure the accuracy of all the information (the "Content") contained in the publications on our platform. However, Taylor & Francis, our agents, and our licensors make no representations or warranties whatsoever as to the accuracy, completeness, or suitability for any purpose of the Content. Any opinions and views expressed in this publication are the opinions and views of the authors, and are not the views of or endorsed by Taylor & Francis. The accuracy of the Content should not be relied upon and should be independently verified with primary sources of information. Taylor and Francis shall not be liable for any losses, actions, claims, proceedings, demands, costs, expenses, damages, and other liabilities whatsoever or howsoever caused arising directly or indirectly in connection with, in relation to or arising out of the use of the Content.

This article may be used for research, teaching, and private study purposes. Any substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any form to anyone is expressly forbidden. Terms & Conditions of access and use can be found at http://www.tandfonline.com/page/terms-and-conditions
Use of Illicit Drugs by Truck Drivers Arriving at Paranaguá Port Terminal, Brazil

TIAGO SEVERO PEIXE1, RAFAEL MENCK DE ALMEIDA2, EDMARLON GIROTTO3, SELMA MAFFEI DE ANDRADE4, and ARTHUR EUMANN MESAS4

1Department of Pathology, Clinical and Toxicology Analysis, Universidade Estadual de Londrina (UEL), Londrina, Paraná, Brazil
2Faculty of Pharmaceutical Sciences, Universidade de São Paulo (USP), São Paulo, Brazil
3Department of Pharmaceutical Sciences, Universidade Estadual de Londrina (UEL), Londrina, Paraná, Brazil
4Department of Public Health, Postgraduate Program in Public Health, Universidade Estadual de Londrina (UEL), Londrina, Paraná, Brazil

Received 8 July 2013, Accepted 20 November 2013

Objective: The purpose of this study was to estimate the prevalence of recent use of illicit drugs among truck drivers who had parked their vehicles at the terminal port in Paranaguá City at Paraná State, southern Brazil.

Methods: This cross-sectional study was part of a larger research project conducted among drivers at a regional Brazilian port. Data on professional characteristics, involvement in road traffic injuries, sleep, and use of alcohol and illicit drugs were collected using a questionnaire. Urine samples were collected and analyzed for amphetamines, cocaine, and cannabis using gas chromatography with mass spectrometric detection.

Results: Sixty-two drivers were included in the study. Toxicological analyses showed that 8.1 percent (95% confidence interval [CI], 2.7–17.8%) of the urine samples were positive for drugs (4.8% for cocaine, 1.6% for amphetamine, and 1.6% for both); 8.1 percent reported drug use during the preceding 30 days in the questionnaire and only one tested positive for the drug in the urine sample. No sample was positive for cannabinoids. In total, at least 14.5 percent (95% CI, 6.9–25.8%) had used illicit drugs during the preceding 30 days based on self-reports and urine testing. Drivers who reported involvement in traffic injuries the year before more often tested positive for drugs in biological samples (P < .05).

Conclusions: This research provides preliminary evidence that the use of illicit stimulants was common among professional truck drivers transporting grain loads. Thus, actions are needed to reduce drug use among truck drivers in order to prevent drug-related road traffic injuries.

Keywords: drugs, driving under the influence, truck drivers, urine, port terminal

Introduction

The number of road traffic injuries has reached alarming levels and is an important public health problem worldwide. More than 1.2 million people die annually because of road traffic injuries and an estimated 20–50 million people are injured (World Health Organization 2004). Brazil is no different; vehicle-related injuries cause 37,000 deaths every year and a collision involving professional truck drivers occurs every 5 min, resulting in annual losses of US$4 billion (IPEA 2003; Oliveira et al. 2012).

The main risk factors involved are driving under the influence of alcohol or drugs, fatigue, young age, speed, and road-related factors (World Health Organization 2004). The use of drugs, medicines, and/or alcohol by injured drivers has been the subject of research in Brazil (Alves 2005). Some studies have been designed and randomized roadside drug testing has been implemented to understand the use of illicit drugs by truck drivers (Leyton et al. 2012; Pechansky et al. 2009; Yonamine et al. 2013). However, the verification of driving under the influence of drugs is considered a more complex task than that of driving under the influence of alcohol (Davey et al. 2007).

There are few studies in Brazil on the use of psychoactive substances by truck drivers, especially the analysis of biological samples. In 4 studies that identified the use of these drugs in biological samples (urine or saliva), amphetamines proved prevalent in positive samples (Leyton et al. 2012; Pechansky et al. 2010; Takitane et al. 2013; Yonamine et al. 2013), ranging from 0.64 percent (Yonamine et al. 2013) to 10.8 percent (Takitane et al. 2013). Also in Brazil, more recent studies evaluating the use of psychoactive drugs through self-report found that amphetamines are the most frequently used drug...

In fact, trucks dominate the transport industry in Brazil; all final goods and services are transported along the highways, which account for 1,700,000 km of the roadways. Further, the workload of the professional truck driver is high, the working hours have just been regulated (Federative Republic of Brazil 2012) but the law is not properly enforced, and some do not have adequate breaks for rest or meals (Arnold et al. 1997; Costa et al. 2003; Mello 2000), which may encourage the use of psychoactive drugs, causing damage to workers’ health (Neri et al. 2005). This study aimed at estimating the prevalence of recent illicit drug use by truck drivers arriving at the terminal port in the city of Paranaguá in Paraná State by using a questionnaire and drug tests in urine samples.

Methods

Study Design

This cross-sectional descriptive study was part of a larger research project that investigated 670 truck drivers at a Brazilian port to determine substance use and previous involvement in road traffic injuries.

Study Setting

This study was conducted at the Port of Paranaguá, Paraná, southern Brazil, in July 2012. The port is the largest grain port in Latin America and one of the largest centers of maritime trade in the world (ANTAQ 2010). Among the main cargoes handled are soybean, soybean meal, corn, salt, sugar, fertilizers, containers, frozen foods, petroleum, alcohol, and vehicles. In 2012, approximately 350,000 trucks carrying corn, soybean, and soybean meal circulated in the selection yard of the Port of Paranaguá.

Volunteers and Procedures

Truck drivers parked in the selection yard of the Port of Paranaguá, Paraná, Brazil, for unloading grains (corn, soybean, and soybean meal) were asked by the researchers to participate in this research on the use of alcohol and drugs by truck drivers and previous involvement in road traffic injuries. All grain-loaded trucks going to the Port of Paranaguá pass through the selection yard.

An interview was conducted using a questionnaire investigating sociodemographic information, consumption of alcoholic beverages, practices and professional characteristics (distance of previous trip while working as a driver, time spent working as a driver, vehicle ownership, form of income, work shift), involvement in traffic injuries and near traffic injuries, hours of sleep, and self-reported sleep quality. A self-completed questionnaire on recent use of illicit drugs (amphetamines, cocaine, crack cocaine, cannabis, and heroin) within the preceding 30 days was also employed.

Study participants (670) were selected by convenience sampling (Dörnyei 2007). Because the input and allocation of drivers in the marshalling yard was not systematic, one in 3 (n = 225) were asked to provide a urine sample for testing for the presence of psychoactive substances. Of those, 62 agreed to provide urine samples. To guarantee the confidentiality of the volunteers, questionnaires and urine collection tubes were only identified with a code number. This study was approved by the Ethics Committee of the Universidade Estadual de Londrina. Before the interview and provision of urine samples, respondents were informed about the research objectives and provided written informed consent.

Sample Collection and Analyses

Urine samples were collected using plastic (polypropylene) collection tubes, and the samples were cooled to approximately 4°C until they were analyzed a few days later. The pH and urinary density were measured. All samples collected were screened for amphetamines, benzoylecgonine, and cannabinoids. The screening test was carried out through an automatic enzymatic immunoassay using Dimension RXL, Maxx (Siemens Healthcare Diagnostics Inc., Newark, DE). The cutoffs used for screening of amphetamines, benzoylecgonine, and cannabinoids were 1000, 300, and 50 ng/mL, respectively. The confirmation test was performed by gas chromatography–mass spectrometry (model 6850, MSD (mass spectrometry detector): model 5975; Agilent Technologies, Wilmington, DE) using previously published methodologies (Gjerde et al. 1993; Scheidweiler and Huestis 2006; Yonamine et al. 2002) with cutoffs of 500 ng/mL for amphetamine, 150 ng/mL for benzoylecgonine, and 15 ng/mL for delta-9-tetrahydrocannabinol-9-carboxylic acid (Hall and Henry 2006; Kalant 2001).

Statistical Analyses

The processing and data analysis were conducted using the software Epi Info Version 3.5.3 (Centers for Disease Control and Prevention, Atlanta, GA) for Windows. Basic descriptive statistics were performed, including percentage frequency and means. For the association analysis, chi-square or Fisher’s tests were used.

Results

Of the drivers who participated in the larger study, 62 provided urine samples for testing (9.3% of the participants in the study and 27.6% of those invited to provide a urine sample). Of these, 43.5 percent were aged less than 40 years (median: 41.5) and 24.2 percent had less than 4 years of formal study.

Most drivers (67.7%) had traveled more than 500 km on the previous trip. More than two thirds of the drivers had been working in the profession for more than 10 years, did not own their own truck, and were paid only according to their productivity. Nearly 30 percent of the drivers often drove during the night (Table 1).
Illicit Drug Use Among Truck Drivers in Brazil

Table 1. Distribution of drivers according to professional practices and characteristics, Port of Paranaguá, Paraná, Brazil, 2012

<table>
<thead>
<tr>
<th>Distance covered during the previous trip</th>
<th>n</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Below 500 km</td>
<td>20</td>
<td>32.3</td>
</tr>
<tr>
<td>501 to 1000 km</td>
<td>19</td>
<td>30.6</td>
</tr>
<tr>
<td>Above 1000 km</td>
<td>23</td>
<td>37.1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Time spent working as a driver</th>
<th>n</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Below 2 years</td>
<td>1</td>
<td>1.6</td>
</tr>
<tr>
<td>2 to 10 years</td>
<td>16</td>
<td>25.8</td>
</tr>
<tr>
<td>Above 10 years</td>
<td>45</td>
<td>72.6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Own truck</th>
<th>n</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>20</td>
<td>32.3</td>
</tr>
<tr>
<td>No</td>
<td>42</td>
<td>67.7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Type of income</th>
<th>n</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fixed</td>
<td>9</td>
<td>14.5</td>
</tr>
<tr>
<td>Productivity</td>
<td>48</td>
<td>77.4</td>
</tr>
<tr>
<td>Fixed + Productivity</td>
<td>5</td>
<td>8.1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Work shift</th>
<th>n</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mostly night</td>
<td>7</td>
<td>11.3</td>
</tr>
<tr>
<td>Night and day, similar proportions</td>
<td>11</td>
<td>17.7</td>
</tr>
<tr>
<td>Mostly day or just day</td>
<td>44</td>
<td>71.0</td>
</tr>
</tbody>
</table>

Of the drivers evaluated, 33.9 percent had been involved in road traffic accidents and, of these, 23.8 percent had been involved in road traffic injuries within the last year (8.1% of the total truck drivers). More than 40 percent reported nearly having road traffic injuries within the previous year. The majority (93.6%) of drivers reported sleeping 6 h or more per 24 h with sleep quality that was very good or good (82.3%; Table 2).

Alcohol consumption was reported by 53.2 percent (95% confidence interval [CI], 40.1–66.0%) of the subjects, with just over 54.5 percent of these drivers reporting occasionally consuming alcoholic beverages (1–3 days per week). Beer consumption was reported by all truckers and caipirinha and brandy by 9.6 and 3.2 percent, respectively. In the previous 30 days, 8.1 percent (95% CI, 2.7–17.8%; n = 5) of the drivers reported using psychoactive drugs, with amphetamines being the only substance reported (n = 5).

The toxicological analysis showed that 5 (8.1%; 95% CI, 2.7–17.8%) drivers had positive samples: 3 positive for cocaine, one positive for amphetamine, and one positive for polydrugs (cocaine and amphetamine). None of the samples were positive for cannabinoids. Importantly, only one driver who had a positive sample reported having consumed any psychoactive drug in the previous 30 days. Thus, the recent use of these substances (previous 30 days), identified by self-reports or using biological samples, was noted in 9 (14.5%; 95% CI, 6.9–25.8%) drivers.

Table 2. Distribution of drivers according to involvement in crashes and sleep characteristics, Port of Paranaguá, Paraná, Brazil, 2012

<table>
<thead>
<tr>
<th>Traffic crashes during profession</th>
<th>n</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>21</td>
<td>33.9</td>
</tr>
<tr>
<td>No</td>
<td>41</td>
<td>66.1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Traffic crashes within the previous year</th>
<th>n</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>5</td>
<td>8.1</td>
</tr>
<tr>
<td>No</td>
<td>57</td>
<td>91.9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Involvement in a near traffic crash</th>
<th>n</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes, within the previous 30 days</td>
<td>19</td>
<td>30.6</td>
</tr>
<tr>
<td>Yes, between the previous 31 and 365 days</td>
<td>8</td>
<td>12.9</td>
</tr>
<tr>
<td>No</td>
<td>35</td>
<td>56.5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hours of sleep per 24 h</th>
<th>n</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Up to 6 hours</td>
<td>4</td>
<td>6.5</td>
</tr>
<tr>
<td>6 to 8 hours</td>
<td>52</td>
<td>83.9</td>
</tr>
<tr>
<td>Above 8 hours</td>
<td>6</td>
<td>9.7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Self-reported sleep quality</th>
<th>n</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Very good or good</td>
<td>51</td>
<td>82.3</td>
</tr>
<tr>
<td>Regular</td>
<td>10</td>
<td>16.1</td>
</tr>
<tr>
<td>Poor</td>
<td>1</td>
<td>1.6</td>
</tr>
</tbody>
</table>

Discussion

Driving under the influence of psychoactive substances (illicit drugs and certain medicines/licit drugs, in addition to alcohol) increases the risk of road traffic injuries and injuries or fatalities; this problem is frequently observed worldwide in the transportation industry (Logan and Osselton 2004). Under current regulatory systems in the European Union and in many other countries, there are legal limits for the blood levels of these substances for drivers, but law enforcement for driving under the influence of drugs is a complex issue (Veisten et al. 2013).

In Brazil, there are legal limits only for driving under the influence of alcohol. In addition, the Brazilian law allows drivers...
to refuse to provide samples for toxicological analysis, which
impairs the identification of drivers under the influence of
these substances. Results from previous studies also suggest
that drug use is fairly common among Brazilian truck drivers.
Silva et al. (2003) conducted a study in 3 out of the 5 geo-
 graphical regions of Brazil. A total of 728 urine samples
were collected (517 in the southeast, 161 in the northeast, and 50
in the southern region) and of these, 41 samples (5.6%) tested
positive for drugs. The frequency of positive samples was quite
similar for the 3 regions.

In another randomized roadside drug test study conducted
in São Paulo state by Leyton et al. (2012), 452 urine sam-
 ples from truck drivers were analyzed and 9.3 percent tested
positive for drugs. Amphetamines were present in 5.8 percent
of the total samples, cocaine in 2.2 percent, and cannabis in
1.1 percent. Only one sample was positive for a combination
of drugs (amphetamine and cocaine; 0.2%). Yonamine et al.
(2013) analyzed oral fluids from 1250 truck drivers who vol-
 unteered to participate in a randomized roadside drug test
performed on highways in São Paulo state. Of the samples
analyzed, 39 (3.1%) of the oral fluid samples collected were
positive for the evaluated substances. Alcohol was present in
1.4 percent of the total samples analyzed, amphetamines in 0.6
percent, cocaine in 0.6 percent, and THC in 0.4 percent. One
case of polydrug use (cocaine and cannabis) was identified.

Urinalysis is an important tool to verify the use of psy-
choactive drugs. However, a positive result does not neces-
 sarily mean that the driver was under the influence of the drugs
at the time of collection. The detection of drugs in the urine
implies that the drugs were used within hours or days be-
fore collection (Council on Scientific Affairs 1987; Ponce and
Leyton 2008; Russell et al. 2008; Treadwell and Robinson
2007). In the present study, the toxicological analysis showed
that 8.1 percent of samples were positive for drugs. In fact, the
study indicates that the incidence of drug use in truck drivers
at a terminal port in Brazil is very similar to that reported in
other previously published studies (Knauth et al. 2002; Nasci-
mento et al. 2007; Pechansky et al. 2010; Takitane et al. 2013);
however, use of cannabis was not observed in our study.

Gjerde et al. (2012) observed in a Norwegian study that
the percentage of drivers whose oral fluids tested positive
for alcohol or drugs was very low (alcohol: 0.1%; amphetamine:
0.2%; cannabinoids: 0.7%; cocaine: 0.8%). This may be a result
of more frequent monitoring of vehicles at checkpoints and
severe punishment for driving under the influence of alcohol
or drugs in Norway (Gjerde et al. 2012). In addition, drivers
are not entitled to refuse random breath testing or evidential
breath testing or blood sampling in cases of suspected driving
under the influence of alcohol or drugs.

Cocaine was the most commonly found drug in the present
study. The recent restriction on the legal marketing of am-
phetamines (Federative Republic of Brazil 2011) might have
led to a search for other stimulating substances among pre-
vious users of amphetamines. Many truck drivers have used
stimulants to help them cope with the long working hours
and high workload. Cocaine is an easily obtained stimulating
substance, which is also used recreationally and can increase
sociability (Lizasoain et al. 2001), which again may stimulate
consumption.

In fact, the rate of drug use among truck drivers in Brazil is
quite high (Campos et al. 2008; Oliveira et al. 2012; Takitane
et al. 2013), and the present Brazilian traffic code states that
“driving under the influence of alcohol or any other psychoac-
tive substances that cause dependence” is a serious offense
(Federative Republic of Brazil 1997). Except for alcohol, the
law does not specify legal limits and does not specify which
drug class or specific substances are prohibited; the law merely
says “substances that cause dependence” (Federative Republic
of Brazil 1997). Nevertheless, only breath testing for alcohol
has been used at checkpoints on highways and streets. In fact,
the results of this study demonstrate that drug use among
truck drivers is a concern, and more intense and judicious ob-
servation of traffic is needed to promote improved road safety
in Brazil (Yonamine et al. 2013).

The research results also show a relationship between
involvement in traffic injuries and positive results for psy-
choactive substances among truck drivers, resembling a study
by Nascimento et al. (2007), which identified that self-reported
consumption of amphetamines was associated with involve-
m ent in traffic injuries, and other studies that claim such a
relationship (Gjerde et al. 2012; Leyton et al. 2012; Riva et al.
2010). These results confirm that there is a need to fight the
use of illicit drugs among truck drivers.

This study had a low number of participants and sampling
was conducted by convenience, which might have hampered
the comparison of results with other studies and caused a bias
in the results observed. However, the results are similar to
other studies conducted in Brazil; it is therefore believed that
there was no under- or overestimation of the results, especially
with regard to the analysis of biological samples. Thus, it is ex-
pected that the methodological weaknesses of this study (low
number of participants and selection procedure) did not affect
its conclusions. Moreover, to the authors’ knowledge, this is
the first study reporting drug use by truck drivers at a port ter-
 minal, which denotes that the observed results may be impor-
tant when analyzing this population group. In short, the iden-
tification of substance use in a subsample of volunteer drivers
draws attention to the need to strengthen measures to reduce
the use of illicit drugs among truck drivers. Furthermore, it is
important to investigate the factors associated with the con-
sumption of these drugs by truck drivers, whether occupa-
tional, contextual, or individual, in order to identify preventive
actions aimed at subgroups that could most benefit from them.

Acknowledgments

The authors thank Professor Jair Aparecido Oliveira; phar-
macists Nathalia Gardim Pessoa and Thamires Flauzino
for drug analysis; and Gisele Antoniaconi, Paola Mariana dos
Santos Leite, and Sarah Caroline Santini for interviews and
handling.

Funding

This work was supported by CAPES–The Brazilian Coordina-
tion Agency for Improvement of Higher Education Personnel,
PROHOSP–Medicine & Diagnosis and Siemens.
Illicit Drug Use Among Truck Drivers in Brazil

References

Alves SR. [Forensic toxicology and public health: development and evaluation of an information system as a tool for surveillance of injuries resulting from the use of chemicals]. Rio de Janeiro, Brazil: Escola Nacional de Saúde Pública; 2005. (in Spanish)

Federative Republic of Brazil. Ministry of Health National Health Surveillance Agency. RDC Resolution n. 52. Provides for the prohibition of use of amphetamine substances fenopropez and mazindol, its salts and isomers, as well as intermediate and control measures of the prescription and dispensing of medicines containing sibutramine substance its salts and isomers, as well as intermediates and other measures. Federal Official Gazette of Brazil; 2011.

Kauftham DR, Pilecco FB, Leal AF, Seffner F, Teixeira AM. [Staying professional drivers]. Diário Oficial da União; 2012. (in Spanish)

Yonamine M, Silva OA. Confirmation of cocaine exposure by gas chromatography–mass spectrometry of urine extracts after methyla-